
978-1-5386-1101-2/17/$31.00 ©2017 IEEE

iSDF: an Integrated Software-defined Computing
Framework for Scientific Experiments*

Seoyoung Kim, Julim Ahn, Heewon Kim,
Yoonhee Kim 0

Dept. of Computer Science
Sookmyung Women’s University

Seoul, Korea
{sssyyy77, julim8990, gmldnjs0610, yulan}@sm.ac.kr

0 Corresponding author

Jieun Choi
Dept. of Supercomputing

Korea Institute of Science and Technology
Information (KISTI)

Daejeon, Korea
jieun1205@kisti.re.kr

Abstract— Cloud computing platform is becoming one of the
most desired environments for the emerging applications as well
as traditional application domains. In this regards, there have
been lots of efforts to develop and redesign the framework to
deliver solutions that meet a variety of requirements including
resilience, performance, and agility.

This paper presents a design and implementation of iSDF, an
integrated software-defined computing framework for scientific
experiments. The iSDF aims at reinforcing traditional cloud-
based scheme by supporting application-aware scheduling that
avoids resource starvation and contentions for software-defined
computing. To demonstrate the effectiveness of the iSDF, we
evaluate it by performing several experiments based on three
scenarios. The results show that our framework can achieve a
51% increase on resource utilization and average makespan time
a 19% improvement compared to the conditions that do not
include the policy. Thus, we proved that the framework can
contribute to increase utilization for shared resources and to
optimize overall makespan time, eventually affecting overall
throughput of jobs.

Keywords— Cloud computing; Software-defined computing;
Scientific applications; Dynamic resource sharing; Workflow, Anti-
interference scheduling

I. INTRODUCTION
With the rapid technological advance in cloud computing,

more and more application executions have been migrating to
data centers in a variety of fields. Accordingly, applications
running over the clouds are getting diverse and their demands
are also increasing. Such shifts could lead resource contentions
in data centers, which can cause low resource utilization and
make the datacenter burdensome to manage.

To address these issues with regard to software-aspect,
there has been a lot of efforts to create a new paradigm: the
computing environment can be redefined in a software-oriented
way, which is referred as software-defined environment (SDE).

Software-defined environment[1] is an abstracted and
virtualized IT infrastructures automatically managed by
software where software-defined computing(SDC), software-

defined network(SDN) and software-defined storage(SDS)
exist and eventually compose a software-defined design of
infrastructure system: Software-defined infrastructure (SDI).

Among them, Software-defined Computing is the most
meaningful for most of application domains running over data
centers. It allows mobility and higher resource utilization, as
several virtual resources can be assigned together to the
identical server, and different requirements for resources can
be mitigated by being shared amongst the virtual resources.

On the other hand, scientific applications exhibit distinct
properties such as heterogeneous workloads, diverse running
patterns and highly dynamic demands for resources, making
them still non-trivial to support and run on clouds. To achieve
optimized performance as well as improvement of resource
utilization for it, it is essential to design its own software-
design computing framework.

In this paper, we have designed and implemented iSDF, an
integrated Software-Defined computing Framework for
scientific experiments that offers sophisticated resource
allocations over diverse types of resources. The key features of
our framework are described as follows:

1) Design of Software-defined computing framework
 : we have designed a framework for software-
defined computing that enables the management to
be decoupled and independent from underlying
infrastructures, so that we can elastically regulate
them

2) Application-aware Anti-Interference scheduling
: it offers a dynamic fine-grained resource scheduling
by detecting different application’s needs and
minimizing inteferences between concurrent jobs

3) Workflow supporting
: not only a bunch of tasks, it also supports workflow
execution and scheduling to ensure its performance

4) Ease of use environment
: users can control this framework with graphical
interface(GUI) or application program interface(API)
without additional knowledgements of computing
parts

* This work was supported by the National Research Foundation of
Korea(NRF) grant funded by the Korea government(MSIP)(NRF-
2017R1A2B4005681)

157978-1-5386-1101-2/17/$31.00 ©2017 IEEE APNOMS 2017

978-1-5386-1101-2/17/$31.00 ©2017 IEEE

This paper is organized as follows. Section 2 surveys
related work. Section 3 details our framework by presenting
architecture and execution scenarios. After introducing the
scheduling strategy adopted in this framework, we evaluate it
in Section 4. Finally, we conclude in Section 5.

II. RELATED WORKS
There exists some related technologies to develop the

integrated system with scheduling method. In this section, we
discuss these researches in detail.

High Throughput Computing-as-a-Service(HTCaaS) [2] is
an integrated multi-level scheduling and job submission
system. It aims to enable for scientists to carry out large-scale
and complex scientific computations by integrating computing
resources over heterogeneous infrastructures such as Grids,
Clouds and Supercomputers. This system, however, is focused
on the large-scale task executions rather than on allocating
fine-grained resources. Moreover, it is required to develop an
adaptor to connect and expand new infrastructures. Our
framework, iSDF is improved further upon the HTCaaS
system by redesigning job processing part and complementing
resource management parts.

In the aspect of job scheduling and resource allocation
research for cloud environment, [3] proposed a controlling
system which allocates appropriate resources through
monitoring and analyzing current workloads of applications. In
this work, a virtual server is operated on a group of physical
machines and each server is responsible for particular.
However, this study mainly focused on the proper resource
management and utilization with less considering task
performance.

Other work [4] suggested a scheduling scheme considering
deadline as well as power consumption in a cloud computing
environment. However, this scheduling has limitations that it
is not applicable to scientific application such as workflow
because it is a target of Bag of tasks application which does
not have dependency between tasks.

The paper [5], which proposed a scheduling scheme for
interdependent workflow applications without limiting the
scheduling object to the Bag of tasks application, has
limitations in the grid environment, not in the cloud
environment.

 In this paper, we propose a SDC framework offering the
application-aware anti-interference scheduling strategy where
it schedules tasks according to the needs of various types of
resources and weights by retrieving the profiling information
containing the application's job characteristics information in
the cloud computing environment.

III. AN INTEGRATED SDC FRAMEWORK
We begin the description of the proposed framework by

introduting its arcitecture. We then explain how the jobs and
computing resources are effectively managed by our
framework with execution scenario.

A. Architecture
Fig. 1 illustrates the architecture of our integrated SDC

framework, iSDF. Its components are categorized into three
groups according to job or resource aspect and others.

Fig. 1 Architecture of the integrated framework

First group related with job management consists of Job
Submission, Job Management and Job Dispatch module.

Job Submission module manages and parses job description
files, JSDL, specified by user(s). Job Submission Description
Language (JSDL) [6] is an extensible XML specification to
describe requirements of computational jobs. JSDL includes
job name, file staging (in/output, executable files), commands
to execute and arguments with their range. The multiple tasks
can be generated according to the range of the arguments by
parameter sweeping. This file also can be specified differently
depending on the characteristic of the application to run. In
case of workflow, for instance, it can include the dependency
information and additional file staging steps as well as the
basic parameters such as application name, file staging, etc.
The module then loads it in a form of the dependency-based
job graph.

Job Management module mainly takes care of tasks
scheduling and queue management. It manages the entire
queue where tasks are categorized by their job id before
splitting. In the workflow case, the same procedure is
performed after checking its dependency, which is supported
by Chronos[7]. One of the main role of this module is making
the plan for task scheduling. Here, diverse scheduling policies
can be applied to the framework by system administrator. As a
default, however, this framework adopts the fine-grained
resource allocation method exploiting the application
characteristics analyzed from the system which also refers to
Application-aware Anti-interference scheduling method. This
method will be discuss in details later.

158

978-1-5386-1101-2/17/$31.00 ©2017 IEEE

Job Dispatch module exams the input data, the execution
file, and launches the tasks into the allocated resources (a.k.a.
virtual machine).

The second category related with resource consists of
Resource Management and Monitoring modules.

Resource Management module principally takes charge of
allocation for multiple types of resources and management of
virtual machines. This module is based on Mesos [8] which
helps the system control multiple computers as one computer
and allocate resources in dynamic way. It launches the virtual
machines based on the plan made by the Job Management
module and also regulates the particular resources (e.g., cpu,
mem, disk, etc.).

Monitoring module collects the status of CPU, Memory,
Disk, virtual resources and Job status periodically, and shares
them with other modules. The monitored information is stored
in the Resource & Task Information DB.

The rest contains only one module: Profiling Management.
This module manages the simulation history based on the
submitted jobs. Whenever each job is completed, meaningful
information is extracted in the form of a profile schema, and
then its profile information is stored. When the Job
Management module asks characteristic information, this
Profile Mgmt. module returns it if it exists, otherwise just
keeps the profile as the new application. The job profiles keep
being accumulated every time it is executed. The profiling
method applied in this framework is based on the algorithm of
this paper [9] which proposed the methodology for analyzing
and finding the characteristic (i.e., factors) of the jobs through
profiling. The factors to be determined from profiling are
categorized according to the following two characteristics;
Application and Resource. Application factors can be several
and input arguments used during the runtime that are likely to
directly affect the execution time of the application. Resource
factors include the parameters of physical elements that have a
significant effect on the duration of the job. This may consist
of CPU count, job reliability (rate of the number of all
successful tasks), maximum parallel throughput, and the
average waiting time (waiting time from submission of a job
to beginning of the rst task). At this time, such profile
information is stored in Profiling Information DB.

B. Execution Scenario
 The overall steps of job execution and its processes in iSDF

are depicted on Fig. 2 and described as follow:

1) A JSDL file specified by user is submitted to the iSDF
through the front-end, either API(Application Programming
Interface) or GUI (Graphic User Interface).
2) The Job Submission module parses the JSDL file and
extracts information such as application type, executable file
path, parameters, dependency, etc. For each job, the module
generates one or multiple tasks (sub-jobs) depending on the
range of parameters specified in the file, and then sends them
into the queue of Job management module with their
affiliation info. (i.e., job id).

3) The Job management module asks the job characteristics to
the Profile Management module by sending the list of
affiliation information for the tasks. The job profile data is
used for the upcoming scheduling and allocation step.

Fig. 2 Execution Scenario of the integrated framework

4) After collecting the quantitative information of available
resources via the Monitoring module, the Job Management
module decides a scheduling plan for the tasks based on the
scheduling policy (e.g., Application-aware anti-interference
method) and sends it to the Resource management module.
5) Resource Management module launches the virtual
machines, according to the pre-established plan which
depends on the multiple type of the resources allocated.
6) Job Dispatch module prepares to launch the tasks by
checking input and execution file and, finally, sends the tasks
into the VMs.

C. Application-aware Anti-interference scheduler
 It has been known that lots of computational jobs running

on datacenters tend to vary, covering CPU, Memory-intensive
or I/O-intensive [10][11]. Such kind of jobs may be allocated
inappropriate resource (for instance, memory) instead of the
actual its desire (for example, CPU), eventually causing
overall performance degradation as well as low throughput for
all executing jobs. In order to guarantee ideal performance
with limited resources, it is important to offer sophisticated
and balanced scheduling by figuring what the application
really needs and providing it so that whole applications are
able to be run in anti-interference way.

The application-aware anti-interference scheduler, our iSDF
is adopting, is developed to support aforementioned issue and
delivers the following three features: first, it offers a fine-
grained resource allocation exploiting resource needs and its
degree (i.e., CPU/Mem/Disk/Port weights) from the profiling
management module in this framework. The second feature is
‘anti-interference’-based scheduling service which is
scheduling tasks according to the needs for the multiple types
of resources and weights resulting in well-balanced resource
utilization and letting the tasks be oblivious of interference.
The last feature is a workflow-supportive scheduling which
offers resource reservation using Maximum Estimated
Resource requirements (MER is induced from the resource

159

978-1-5386-1101-2/17/$31.00 ©2017 IEEE

requirement of each task and the maximal concurrent degrees
of a workflow where the degree of concurrency in a level is
the number of tasks in the level). Suppose that a workflow job
is submitted where MER:{cpu=5, Mem=1}. Our scheduler
gives priority to this workflow job by reserving (allocating)
resources (cpu=5, mem=1) and then reschedules other tasks
with remained resources toward the way to minimize
interference between all jobs.

Fig. 3 is a flowchart of our scheduling algorithm. If the
current job is workflow, it allocates resources using its MER
value. When a task has dominant resources, it schedules to
maximize resource consumption (minimize remaining
resources) by putting resources into tasks that have opposing
dominant resource requirements.

Fig. 3 A Flowchart of the Application-aware Anti-

interference Scheduling

 Fig. 4 illustrates a simple example to offer better
understanding on the mechanism of our scheduling method.
Resource management module gets reported the total amount
of the available resources regularly (Step 1). Monitoring
module updates the resource capacities and in the meantime,
Job management module acquires the resource availability
from the Monitoring (Step 2). Given the list of submitted jobs,
their resource demands are Job1:{2cpu, 2gb, MER=null},
Job2:{1cpu, 5gb, MER=3} which are offered by Profiling
Management module (Step 3). The job management module
gives priority to task2 since it (belonging to Job2) has MER
value, and reserves resources as follow: 3*{1cpu,

5gb}[3cpu, 15gb]. After, task 1 and task 3 are scheduled on
the remained resources in ascending order of the resource
needs (Step 5).

Fig. 4 An example of the Application-aware
Anti-interference Scheduling Method

IV. PERFORMANCE EVALUATION

Here, we shows the performance evaluation of our
framework.

A. Experimental environment & setting
 We created an experiment environment with the features
specified on Table 1. In this paper, we construct a private
cloud environment based on OpenStack [12] version Liverty
as a computing environment. They are Intel Xeon CPU E6-
1650 v4 @3.60 GHz with 12 cores & 32GB RAM for master,
and two of slave. We use two applications in this experiments:
Autodock which is bag of tasks application, and Montage
which is a workflow application.

TABLE 1 EXPERIMENTAL SETTING

 CPU Memory(GB)
Controller 12 32
Compute1 12 32
Compute2 12 32

AutoDock [13] is a molecular modeling simulation software

which is largely used for drug repositioning area. For our
experiments, we choose autodock3 which aimed at performing
the docking of ligands to a set of target proteins in order to
find out possible new drugs for several serious diseases such
as SARS and Malaria, from a wide range of scientific
computing applications to act for CPU-intensive jobs having
small input (6.1MB)/output data(3.0KB) files with low
memory usage, as shown on the Table 2. Autodock has 0.7%
memory utilization while maintain 100.0% CPU utilization.

Montage [14] is an astronomical image mosaic engine for
making complex Flexible image transport system (FITS) using
multiple astronomical images. In our experiments, we use a

160

978-1-5386-1101-2/17/$31.00 ©2017 IEEE

set of five data cubes, released as part of the Galactic
AreciboL-band Feed Array HI(GALFA-HI) survey [15], into a
mosaic. It is considered a data-intensive application having
not only moderately lots of input (5.5 GB) and output (3.2
GB) data files but also intermediate files. Montage has quite
high memory utilization whereas CPU utilization is relatively
low, 90.8 and 9.1%, respectively. Table 2 shows a measure of
resource usage of each application.

Fig. 5 Montage GALFA Workflow

TABLE 2 A MEASURMENT OF RESOURCE UASGE
OF APPLICATIONS

Application Avg. use of CPU(%) Avg use of Mem(%)
Autodock 99.2 1.1
Montage 87.3 10.5

In this experiment, we carried out the Autodock application
with one thousand of ligands, and each of tasks uses 1 core of
CPU, 0.1MB of Memory. Montage application, defined as Fig.
5, consists of 16 tasks and each task of it needs 1 core of CPU,
and approximately 1GB of Memory.
 To demonstrate effectiveness of our framework, we consider
three scenarios having difference scheduling and allocation
policy each other, which are detailed as the following:

1. A scheduling with no aid of application profiling, no
consideration of overall utilization

2. A scheduling using the application profiling without
anti-interference control

3. A scheduling with application profiling and anti-
interference control

In the first case, we assume that the default policy to
allocate resources is performed as distributing resources in the
ratio R/n % (where R is the ratio of total available resources
and n is the count of applications to run). To validate the anti-
interference function of our scheduler, the second and third
scenarios are performed, both of which utilize the profiling

function. This way we can note the differences with or without
our scheduler precisely.
 We ran two applications, which are mentioned before, for
100 times respectively and calculated the average costs in
terms of makespan and utilization over the aforementioned
three scenarios.

B. Results and Analysis

Fig. 6 Experimental result of Scenario #1

 With respect to the addressed condition, Fig. 6 – 8 depict
the results, respectively.
 In the first case where the default scheduling policy is
employed, the jobs for each applications can be given 50% of
total resources, respectively, because only two applications are
carried out and the initial rate of available resources is 100%
(from R/n = 100/2%).
 As seen on the Fig. 6, it leads to low resource utilization
over all, since the jobs for each application could not take
enough resources they preferred and could be performed with
fixed number of resources.

 The second scenario generates interesting result as plotted
on Fig. 7. Although each task received the proper virtual
resource that furnished the desired resources using profiling
module, we can notice that the resource starvation for
workflow application (Montage) encountered while they are
running. Thus, it incurred the long latency and makespan time
for specific application such as workflow.

161

978-1-5386-1101-2/17/$31.00 ©2017 IEEE

Fig. 7 Experimental result of Scenario #2

The result seems to be caused by the pursuit of resource
being more concentrated on the specific one for each
application (e.g., cpu for Autodock) and overall utilization for
each server being not considered.

Fig. 8 Experimental result of Scenario #3

 As mentioned before, the third case uses both the profiling
and anti-interference control where the scheduler reserves
resources up to the MER (Maximum Estimated Resource
needs) if workflow exists. Its result is depicted on the Fig. 8
where the arrow indicates the reservation. By properly
reserving resources for workflow, the scheduler is able to
prevent the resource starvation as well as performance
degradation. In addition, it is found that the anti-interference
scheduling considering utilization for each server gives highly
effects on improving the utilization for the whole servers,
which eventually contributes to shorter makespan time.

V. CONCLUSTION AND FUTURE WORK
Lots of investigations to configure the new framework for

cloud computing tailored to cover diverse applications and
resources are increasingly made in the recent computing
industry. Due to the disruptive properties of scientific
applications, it is still challenging to adapt them in virtualized
computing environment.

To address this problem, this paper proposed an integrated
Software-Defined computing Framework for scientific
experiments which is referred as iSDF that provides the
sophisticated allocations over diverse types of resources by
considering application’s properties. By supporting an
integrated environment that’s easy to use , in addition, users
can efficiently utilize it with no supplementary knowledge on
complex parts. The experimental results to evaluate our
framework showed that our framework can achieve a 51%

increase in terms of resource utilization, and the improve the
average makespan time by a 19% compared to the conditions
that do not include the policy.

Our future work is compensating this framework by
adjoining a module to take care of data management that
enables users not to perform duplicated simulations. Moreover,
we are going to perform additional experiments on the hybrid
cloud environments that include both private and public clouds.

ACKNOWLEDGMENT
This work was supported by the National Research

Foundation of Korea(NRF) grant funded by the Korea
government(MSIP)(NRF-2017R1A2B4005681)

REFERENCES
[1] Li, C-S., et al. "Software defined environments: An introduction." IBM

Journal of Research and Development 58.2/3 (2014): 1-1.
[2] Rho, S., Kim, S., Kim, S., Kim, S., Kim, J. S., Hwang, S. “ HTCaaS: a

large-scale high-throughput computing by leveraging grids,
supercomputers and cloud.” In High Performance Computing,
Networking, Storage and Analysis (SCC), 2012 SC Companion: (pp.
1341-1342). IEEE.

[3] Wang, XiaoYing, et al. "Appliance-based autonomic provisioning
framework for virtualized outsourcing data center." Autonomic
Computing, 2007. ICAC'07. Fourth International Conference on. IEEE,
2007.

[4] J. Lee, H. Kang, Y. Kim, “Energy-Efficient Provisioning of Virtual
Machines for Workflow Applications”, KNOM Review, Vol. 16, No. 1,
July 2013, pp. 35-42.

[5] L. F. Bittencourt , E. R. Maderia, “A Performance-oriented Adaptive
Scheduler for Dependent Tasks on Grids,” Concurrency and
Computation: Practice and Experience, vol. 20, pp. 1029-1049, 2008.

[6] Anjomshoaa, Ali, et al., “Job sumbission description language (jsdl)
specification, version 1.0” Open Grid Forum, GFD. Vol. 56. 2005

[7] Dellinger, Matthew, Piyush Garyali, Binoy Ravindran., "ChronOS
Linux: a best-effort real-time multiprocessor Linux kernel." Design
Automation Conference (DAC), 2011 48th ACM/EDAC/IEEE. IEEE,
2011.

[8] Hindman, Benjamin, et al., "Mesos: A Platform for Fine-Grained
Resource Sharing in the Data Center." NSDI. Vol. 11. No. 2011. 2011.

[9] Kim, S., Kim, J. S., Hwang, S., Kim, Y., “Towards effective science
cloud provisioning for a large-scale high-throughput computing” Cluster
computing, 17(4), 1157-1169.

[10] Bikash Sharma, Ramya Prabhakar, Seung-Hwan Lim, Mahmut T.
Kandemir, and Chita R. Das. “Mrorchestrator: A fine-grained resource
orchestration framework for mapreduce clusters” In IEEE CLOUD,
pages 1–8, 2012.

[11] R. Boutaba, L. Cheng, and Q. Zhang. “On cloud computational models
and the heterogeneity challenge” J. Internet Services and Applications,
3(1):77–86, 2012

[12] Openstack, https://www.openstack.org/
[13] Autodock, http://autodock.scripps.edu/
[14] Montage, http://montage.ipac.caltech.edu/
[15] The Galfa-hi Survey: Data release 1. Astrophys. J. Suppl. 194(2), 13

(2011)

162

